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Introduction

Manlab is a reasearch software suite devoted to the development and the promotion
of the so-called Asymptotic Numerical Method (ANM), a continuation algorithm (or
pathfollowing method) based on high order Taylor series expansions.

This software is written in MATLAB language using Object oriented programming.
It can be downloaded on the dedicated website : http://manlab.lma.cnrs-mrs.fr/.

The graphical interface, the data base and the code structuration have been improved
at the time where Automatic differentiation version of the ANM was introduced. The
new software Diamanlab (written by Isabelle Charpentier and Bruno Cochelin) does
not however support the continuation of periodic solution with the Harmonic Balance
Method (HBM).

The present Manlab 4.0 (written by Louis Guillot) now includes a full re-implementation
of the traditional ANM as in Manlab 2.0 and Manlab 3.0.

The base class @Syst of Diamanlab has been kept.

Two new classes @SystAQ and @SystHBQ were then implemented so as to fit previ-
ous research and developments on quadratic formulation of algebraic systems and
differential algebraic equations (DAE) solved in combination with a HBM. Using a
quadratic formulation is harder for the user but makes the Taylor series evaluation
on which the asymptotic numerical method (ANM) relies far much faster.

This new implementation step gave us the opportunity to clean the code and to
adopt some principles for these two @SystAQ and @SystHBQ classes:

e a clear definition of the original (main) variables of the system and the auxiliary
variables used to obtain a quadratic formulation;

e the systematic use of a tensor formalism;

e an explicit construction of the Jacobian matrix using tensor rather than the
evaluation of its columns one after the other, which was very time consuming;

e an optimised right hand side terms evaluation: the sum from r =1top—1r
of Q(U,,Up—;) has to be done at the lowest possible level to get the maximal
efficiency;

e the bordering technique was re-introduced to solve linear systems so as to not
destroy the band structure of the Jacobian matrices;

e the condensation of the auxiliary variables to improve the speed of the algo-
rithm;
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e a new order of the unknowns when using HBM or collocation techniques;

e taking advantage of what MATLAB does best, vector products, avoid as much
as possible for loops, keep the number of code lines low.

This re-implementation is the result of many contributions due to Rémi Arquier
(first Manlab version), Bruno Cochelin and Christophe Vergez (first version includ-
ing HBM processing), Sami Karkar (tensor formalism, HBM, Collocation), El Hadi
Moussi (Fast EHMAN, FFT, HBM Selective), Isabelle Charpentier (DA, Taylor se-
ries), Daniel Lampoh (Collocation+DA), Pernelle Marone-Hitz (BVP,Collocation),
Olivier Thomas et Arnaud Lazarud (Stability), Emmanuelle Sarrouy (Continuation),
Bruno Cochelin and Marc Médale (Bifurcation), Louis Guillot (Condensation, tran-
scendental non-linearities).

To help the reader know which class should be used, here are typical situations
coming from mechanical engineering and the classes which match the need.

Notations
e \: parameter which varies. A € R.
e u: vector of unknowns of the primary (initial) of the problem. u € Rea,
e U: augmented vector of unknowns. UT = {uT, \}T € RNeat1,
e U, vector of auxiliary unknowns. U,y € RNeaaux,

U: vector containing all the unknowns. U, = {u®, A\, UL }T € RNeatot 1,

aux

R(Uot) = 0: set of Neg equations depending on Negtor + 1 unknowns to be
solved.

Raux(Uyge) = 0: set of Negaux equations depending on Negiot + 1 unknowns
defining the auxiliary variables U sux.

Typical situations

e Static non linear problem: K(A)u + fy(u, \) = f(\)
Such a problem can be solved using @SystAQ class. It needs a quadratic for-
mulation.

e Dynamic non linear problem: f;(u,0,i,\) = fo(¢t) where u is an unknown
periodic function of the time.
Such a problem can be solved using a HBM method via @SystHBQ class. It
needs a quadratic formulation.



Chapter 1

Algebraic systems in quadratic
format for efficiency: the @SystAQ
class

Let us consider the ECrea example. The unknown is U = [uj,uz, A]T and the
equations are

7“1(U1,U2,/\) = 2u; —ug+100—4— — X =0

14+uq +u (11)
Tz(ul,UQ,/\) = 2uQ—u1—|—1001+u vy ()\—i-,u) =0

with p a given parameter.

To use the @SystAQ class, this problem must be rewritten in a quadratic format.
This is achieved by defining auxiliary variables: v; = 1 +uy 4+ u2, vo = 1 + ug + u3,
and v3 = 1/v1, v4 = 1/vy. One gets an augmented vector of unknown Uiy =
[u1, u2, A, v1, v2,v3, v4]T which should verify

0 + 2u;—us—XA 4+ 100ujvs =0

—u — up+2us—A 4+ 100ugvy =0
-1+ u-w - wur =0
-1 + Vg — U9 - U2 U2 =0 (1.2)
-1 + 0 +  wvvs =0
-1 + 0 +  wwy =0

Remark: Here we have, Noq = 2 main equations, Negaux = 4 auxiliary equations,
Neqgtot = Neq + Negaux = 6 equations in total and Vi, = 7 unknowns. The main Negy
equations are given first. Then the auxiliary variables are defined in the last Neqaux
equations.

The basic directory structure for a user defined system which is called “MySystem”
and defined using the @SystAQ class should be
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\somewhereinmytree
MySystemLaunchSheet.m | Sheet launching Manlab 4.0
with options

equations.m Sheet defining the equations
of the system

point_display.m Sheet defining user defined
display of a point

global_display.m Sheet defining user defined

display of a solution—branch

The MySystemLaunchSheet.m file This files define the parameter of the Sys-
tem and creates the System before launching Manlab 4.0 with possible options. A
typical MySystemLaunchSheet .m is:

% Some comments about the system studied

% Definition of the parameters of My System
parameters.proplvalue = 30;

parameters.prop2value 0.1;

% Creation of the SystAQ object

sys = SystAQ (neq,neq_aux, @equations,
@point_display, @global_display,parameters)

% Starting point

lambdaO = 0;

u0 = zeros(neq,1);

U0 = [u0 ; lambdaO];
v0 = zeros(neqg_aux,1);
UOtot = [UO ; UOtot];

o

% Running Manlab

Manlab ( 'sys' , SYS,

'UOvalue' ,UO0tot,
'displayvariables', [1, 2]);

A @SystAQ class object is created when calling SystAQ (neq, neq_aux, ..). It is
given to Manlab 4.0 as a first argument "sys'.

The arguments of SystAQ define the system. More precisely its number of equations
before adding auxiliary variables, its number of auxiliary equations, the function
defining the equations of the system, the two point—display and global-display func-
tions and the parameters. See below for more precision about the handles.

The 'UOvalue' argument is the starting point (column vector with size of Uyet).
Finally 'displayvariables' variables to be displayed in the projected bifurcation
diagram are defined; here [1, 2] means that U(2) vs U(1) will be drawn.

The equations.m file This files defines the quadratic formulation of the equations
of the user system. Contrary to Manlab previous versions, there is no need to specify
the operator C', L and () one by one. Manlab 4.0 computes directly the operator
from the quadratic recast of the equations, using polarization formulaes. It should
look like :
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function [Rtot,dRaux] = equations(sys,Utot,dUtot)
The auxiliary variables are defined first and then the residue of the

o° o

system considered.

%% Variables : Utot=[ U ; Uaux ] with U=[ u ; lambda ]
u = Utot (l:sys.neq); Main variables

o° o o

lambda = Utot (sys.neqg+l); Continuation parameter

Uaux = Utot (sys.negt2:end); Auxiliary variables

du = dUtot (l:sys.neq); % differential of Main variables
dUaux = dUtot (sys.neqg+2:end); % differential of Auxiliary variables

%% Residues
= zeros(sys.neq,1l);
Raux = zeros(sys.neg_aux,1l);

Main residue

sl

o o

Auxiliary residue

o

% Differential form of non—-quadratic part of the auxiliary residue

dRaux = zeros(sys.neqg_aux,1l);

% Definition of the auxiliary variables | differentiation of the non-quadratic equations
Raux (1) = ; dRaux (1) =

Raux (2) = ;

(
(

% Equations of the main system
1) i
2)

oY)

’

% Concatenation of the two residues
Rtot=[R ; Raux];

end

The equations defining the auxiliary variables are given after the equations of the
system. It is important not to change this order.

The point display.m file The point_display.m file which defines the display
of a solution should look like
function [] = point_display(sys,Utot)

This is the function used to display during the computation of the
branches of solution.

o o

u = Utot (l:sys.neq);
lambda = Utot (sys.neqg+l);
Uaux = Utot (sys.negt2:end);

%$%% Plot the value of the main variables but can do anything
figure (11)
bar (u)

end

The global display.m file The global_display.m file which defines the solution—
branch display at the end of each section should look like
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function [] = global_display(sys,Section)
This is the function used to display during the computation of the

o oP

branches of solution.

Section.UO0 (Taylor series) contains the Taylor series used to describe the section.
Section.Amax (real positive number) is the domain of validity of the series.

o° o oP

Section.Upp (ninc,nb_pts) is the point representation of the series.

ul = Section.Upp (1, :);
lambda = Section.Upp (sys.neqg+l, :);

plot the value of the first variable ul with respect to the value of
the continuation parameter lambda along the section

figure (5)

plot (lambda,ul) ;hold on;

end
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Differential algebraic systems in
quadratic format solved using
HBM: the @SystHBQ class

It is possible to continue periodic solutions of differential-algebraic equations using
the Harmonic Balance Method (HBM) in Manlab 4.0 by providing the system to be
solved. The system originally looks like :

f(t,Y (1), Y (1), Y(t),\) =F(t) (2.1)

Where the vector Y is of size nz and where f has its values in R™ i.e. there are nz
equations in total.

A is here explicitly considered as a "special” parameter compared to Y components;
indeed, Y components, denoted y; will be further expanded into a Fourier series but
A as well as the circular frequency w will not. Hence, these two variables have to be
identified and processed separately.

To solve this system with the @SystHBQ class, we rewrite this implicit system in the
following quadratic form :

dd(Yiot) +Ad1(Yiot) +d(Yiot) +co+ A1 +lo(Yiot) + A (Yiot) +¢(Yiot, Yiot) = F(2)

(2.2)
Where Yot = [Y; Yaux| contains the original degrees of freedom of the system and
some auxiliary variables needed to write the system (2.1) in the quadratic form (2.2).
Y ot IS Of size nzior = Nz + N2Zaux Where nzaux is the size of Y« which is the number
of (additional) auxiliary variables needed to write the quadratic recast. F(t) is a
periodic forcing term that can be null.

The basic directory structure for a user defined system which is called MySystem
and defined using the @SystHBQ class should be
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\somewhereinmytree
MySystemLaunchSheet.m | Sheet launching Manlab 4.0
with options

equations.m Sheet defining the equations
of the system

point_display.m Sheet defining user defined
display of a point

global_display.m Sheet defining user defined

display of a solution—branch

It is exactly the same structure as to define a system using the @SystAQ class.

The MySystemLaunchSheet.m file It defines the parameters of MySystem and
creates the System before launching Manlab 4.0 with possible options. A typical
MySystemLaunchSheet.m is:

Write here the description of your system, the auxiliary variables used,
and its final quadratic recast

o
°
o
o

global U Section Diagram % Global variables to export point from the diagram.

% Path of the SRC file.
addpath('../../SRC")

%% Parameters of the system
nz= 1; number of main equations of the DAE
number of auxiliary equations of the DAE

o
)
o
)

nz_aux =2;

H = 20; % number of harmonics used to compute the solution-branch
type = 'forced'; % type of system ('autonomous' or 'forced')
forcing_pulsation=1; % if the system is forced at a constant pulsation,

o

forcing_pulsation contains its wvalue.
% Otherwise, forcing pulsation = 'omega'.

o

%% Parameters specific to your system
parameters.paraml = 0.5;
1;

parameters.param2

%% initialization of the system
sys=SystHBQ (nz,nz_aux, H, @equations,
@point_display, @global_display,parameters, type, forcing_pulsation);

%% starting point
lambda0=0; % Continuation parameter initial wvalue
omegal=1; % Pulsation initial wvalue

720 =zeros (2+«H+1,sys.nz_tot);

The matrix Z0 contains in column the Fourier development of all the
variables of your system

z00= [ u, v ]

where u = [ u_0 ; u.cl ; vuc2 ; ... ; u_.cH ; u_.sl ; u_s2 ; ... ; u_sH 1;
u_0 is the constant Fourier coefficient, u_cl the first cosine Fourier
coefficient, u_sl the first sine Fourier coefficient, etc...

o° o o° o° o o

z0(1,1) = u0;

7z0(2,1) = ucl;

70 (1+5,1) = ucj; % with 1 <= j <= H
z0(2+H, 1) = usl;
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Z0(1+H+j,1) = usj; % with 1 <= 7 <= H

%$%% Vector UO containing all the unknowns.
U0 = sys.init_UO0 (Z0, omega0, lambdaO) ;

o

%% Launch of Manlab with options

Manlab ('sys' ,SYS

'UOvalue' , U0,

'displayvariables', [ sys.neg+tl 2 ]); % MANLAB run
% lambda ucl - first cosine of the first variable
A @SystHBQ class object is created when calling SystHBQ (nz, nz_aux,H, ..). It is

given to Manlab 4.0 as a first argument "sys'.
The arguments of SystHBQ define the system. More precisely :

e nz is the number of equations of MySystem before adding auxiliary variables;

e nz_aux is the number of auxiliary variables needed to have the form (2.2) for
MySystem;

e H is the number of harmonics to resolve MySystem;

e QRequations is the handle of the function defining all the equations of MySys-
tem;

® @point_display is the handle of the user-defined display function of a solu-
tion;

e Qglobal_display is the handle of the user-defined display function of a solution—
branch;

e parameters is a structure containing the parameters of MySystem;

e type is a string containing the type of MySystem which can be autonomous
or forced;

e forcing_pulsation is an optional argument containing the value of the pul-
sation of the oscillation of MySystem when it is fixed by the forcing terms;

The 'UOvalue' argument is the starting point (column vector with size of Ujey).
In @SystHBQ class, the user has to give the value of the auxiliary variables of the
system.

Finally 'displayvariables' variables to be displayed in the projected bifurcation
(1)

o1 » the first cosine

diagram are defined; here [sys.neg+1, 2] means that lambda vs u
of the first variable, will be drawn.

The equations.m file This files defines the quadratic formulation of the equations
of the user system. Contrary to Manlab previous versions, there is no need to specify
the operator C, L and @ one by one. Manlab 4.0 computes directly the operator
from the quadratic recast of the equations, using polarization formulaes. It should
look like :

function [Rtot,dRaux,Forced] = equations(sys,t,Utot,dUtot,d2Utot)
% Equations of the system of the form
% R(U) = C + LO(U) + lambda L1(U) + DO(dU) +

oe

lambda D1 (dU) + DD(d2U) + Q(U,U) + £(U).

10
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%$%% parameters of the system

paraml = sys.parameters.paraml;
param?2 = sys.parameters.param2;
param3 =

%% Variables
u = Utot (l:sys.nz); Main variables
Uaux = Utot (sys.nz+l:end-1);
lambda = Utot (end);

Auxiliary variables
Continuation parameter

o° o o

du = dUtot (l:sys.nz); % first order derivated of Main variables
dUaux = dUtot (sys.nz+l:end-1); % first order derivated of Auxiliary variables
d2u = d2Utot (l:sys.nz); % second order derivated of Main variables
d2Uaux = d2Utot (sys.nz+l:end-1); % first order derivated of Auxiliary variables

%% Residues

R = zeros(sys.nz,1l); % Main residue

Raux = zeros(sys.nz_aux,1l); % Auxiliary residue

% Differential form of non-quadratic part of the auxiliary residue

dRaux = zeros(sys.nz_aux,1l);

% Definition of the auxiliary variables | differentiation of the non-quadratic equations
Raux (1) = ; dRaux (1) =

% Equations of the main system

o

% Concatenation of the two residues
Rtot=[R ; Raux];

o

Forcing terms

Should be written as if the forcing pulsation value is 1

i.e. the forcing period is 2xpi

Forced = zeros(2+sys.H+1l,sys.nz_tot); % DO NOT CHANGE this line.

o° o oe

o

% if the equation number k is forced, write the forcing in Forced(:, k)
Forced(:,k) = forcing_function(t);

end

The equations defining the auxiliary variables are given after the equations of the
system. It is important not to change this order.

The point display.m file An example of a point_display.m file which defines

the display of a solution looks like

function [] = point_display(obj,Utot)

$Temporal reconstruction of Ut (nt,nz)

H=0bj.H;

% Get the matrix of Fourier coefficients, omega and lambda
[Ztot,omega, lambda]=obj.get_Ztot (Utot) ;

T=2+pi/omega; period of the oscillation
time=0:T/ (4*xH+1) : T; time vector (over one period)
nt=length (time) ;

o° o oP

number of points per period

11
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% Construction of the matrix that transform the frequency domain vector
% Ztot in the time domain vector Ut

VectCos=cos (omegaxtime'x (1:H));

VectSin=sin (omegaxtime'x (1:H));

MAT=[ ones(nt,1l) , VectCos , VectSin ]; % MAT (nt,2+H+1)

Ut =MAT=*Ztot; % Ut (nt,nz_tot)
dUt=MAT~*omegaxobj.D(Ztot) ; % dut/dt (nt,nz_tot)

o

%% Time evolution of the first variable and its derivative
figure(11);
plot (time, Ut (:,1), 'b',time,dUt (:,1),'")
title(['Time evolution of u and du/dt with '
num2str (H) ' harmonics'], 'Fontsize',16)
xlabel ('time (s)');legend(['u'], ['du/dt'], 'Location', 'SouthEast');grid on;

%%% Phase diagram of the first variable

figure(12)
plot (Ut (:,1),dUt(:,1))
title(['Phase diagram (u, du/dt) with ' num2str(H) ' harmonics'], 'Fontsize',16)

xlabel ("u');ylabel ('du/dt");

end

The global _display.m file An example of a global_display.m file which defines
the solution—branch display at the end of each section looks like

function [] = global_display(obj,Section)
Section is a 'CheckPoint class' object
containing all the information about the series:
discrete representation, bifurcation analysis, ...

o° o0 oP

o\

Upp = Section.Upp; Point representation of the series

Number of harmonics

Total number of variable (main and auxiliary)
Tolerance for the convergence of the Fourier series

H=0bj.H;
nz_tot=obj.nz_tot;
tol_h = le-4;

o0 o o°

nb_pt = size (Upp, 2); 3 Number of points per Section
h = zeros(nb_pt,nz_tot);

%% Loop on the point representation of the series
for k = 1l:nb_pt

% k—-th point of the point representation of the series
Uk = Upp(:,k);

% Get the matrix of Fourier coefficients, omega and lambda
[Zk, omega (k) , lambda (k)] = obj.get_Ztot (Uk);

$Computation of the number of harmonics needed to reach the Fourier

% norm of the i-th variable with tol_h tolerance.
for i1=1l:nz_tot

norm_7Z = norm(zZk(:,1i));

partial_norm_Z = norm(zk(l,1));

while (partial_norm_Z/norm_Z<l-tol_h)
h(k,1) = h(k,i)+1;
ind = [ (l1:h(k,i)+1) (H+2:H+1+h(k,1)) 1;
partial_norm_Z = norm(zZk(ind,i));

12
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end
end

end

figure (6);
% plot the number of harmonics needed to have a "good" representation of the solution
for i=1:nz_tot
if i>obj.nz; color = 'b'; else; color = 'r'; end
pl(i)=plot (lambda,h(:,1i), [color '—-x']);hold on;grid on;
end
title ([ 'Number of harmonics needed to reach the
Fourier norm with ' num2str(tol_h) ' precision.'])
legend([pl(l) pl(end)], 'Main variables',
'Auxiliary variables', 'Location', 'SouthEast"');

end

13



Appendix A

Manlab 4.0 command options

When launching Manlab 4.0, several pairs of arguments can be passed to the function
in the following way:

Manlab ('argumentl_name',argumentl_value, ...
'argument2_name',argument2_value, ...
. etc.
'argumentN_name',argumentN_value) ;

Here is a list of the mandatory and optional ones:

Mandatory arguments
e 'sys': an instance of user-defined class

e 'U0value': column vector giving U value used as start point; if R(U) does
not satisfies the accuracy criterion, Newton iterations are applied.

e 'displayvariables': apXx 2 array of index of U components to be displayed
in the projected bifurcation diagram.

Optional arguments

e 'order': order of the Taylor Series used to build sections of branches. Default
is 20.

"ANMthreshold': threshold above which the Taylor series is considered inac-
curate (limits a,,q, value). Default is 1e-6. It can be modified at any time via
the GUI interface.

e 'Amax_max': Maximum value for a,,q;. Default is 1e6. It can be modified at
any time via the GUI interface.

e 'NRthreshold': threshold under which Newton iterations stop. Default is
2e-5. It can be modified at any time via the GUI interface.

e 'NRmethod': indicates whether Newton iterations should be applied to satisfy
NRthreshold each time a new section starts (based on start point or end point
of previous section). Value is 0 (no Newton iteration) or 1 (Newton iteration).
It can be modified at any time via the GUI interface. Default is 1.

14
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e 'NRitemax': Maximum number of Newton iteration for correction. Default is
10.

e 'BifDetection': indicates whether Manlab 4.0 computes the simple bifurca-
tion informations when one is detected. Value is 0 (bifurcation computation
off) or 1 (bifurcation computation on). It can be modified at any time via the
GUI interface. Default is 1.

e 'PointDisplay': indicates whether Manlab 4.0 plots the solution at then end
of each computation of a solution—branch. Default value is 1 (point display
on). It can be modified at any time via the GUI interface.

e 'GlobalDisplay': indicates whether Manlab 4.0 plots the solution—branch at
then end of each computation. Default value is 1 (global display on). It can
be modified at any time via the GUI interface.

e 'StabilityCheck': indicates whether Manlab 4.0 computes the stability of
the solution—branch. Default value is 0. It can be modified at any time via the
GUI interface.

e 'stabTol': Tolerance used in the stability computation. Default value is
le-6.

Warning. The stability computation should not be used if you are not familiar with
Manlab 4.0. It requires a special writing of the system of equations that is explained
in some of the examples that goes with the starting package of Manlab 4.0. It uses
Hill’s method for the stability of periodic solutions. The equations must come from
an ODE system written in the form f(y(¢)) — My(t) = F(¢).

15
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